Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

نویسندگان

  • M Rampichová
  • E Koštáková
  • E Filová
  • E Prosecká
  • M Plencner
  • L Ocheretná
  • A Lytvynets
  • D Lukáš
  • E Amler
چکیده

Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice.

The purpose of the current study is to fabricate tissue engineered trachea with poly-lactic-glycolic acid (PLGA) non-woven mesh enforced by collagen type I. PLGA fibres coated with collagen solution were put together and fabricated into the shape of a human trachea, after drying and cross-linking treatment, a non-woven mesh with "C" shape formed. Chondrocytes from sheep nasal septum cartilage w...

متن کامل

An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts

BACKGROUND Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic...

متن کامل

Scaffold and growth factor selection in temporomandibular joint disc engineering.

Temporomandibular joint disc tissue-engineering studies commonly fail to produce significant matrix before construct contraction. We hypothesized that poly-L-lactic acid (PLLA) non-woven meshes would limit contraction, allow for comprehensive mechanical evaluation, and maintain viability relative to polyglycolic acid (PGA) non-woven mesh controls. Additionally, we proposed that growth factor st...

متن کامل

3D Non-Woven Polyvinylidene Fluoride Scaffolds: Fibre Cross Section and Texturizing Patterns Have Impact on Growth of Mesenchymal Stromal Cells

Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, ...

متن کامل

N-O, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50 kGy.

In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 59 5  شماره 

صفحات  -

تاریخ انتشار 2010